一、KNN算法核心思想
K近邻(K-Nearest Neighbors)是一种基于实例的监督学习算法,其核心是物以类聚:
- 通过计算测试样本与训练集中各样本的距离(如欧式距离),选取最近的K个邻居。
- 根据这K个邻居的类别投票决定测试样本的类别。
二、Python代码示例
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
# 加载数据
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3)
# 训练模型
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
# 预测与评估
accuracy = knn.score(X_test, y_test)
print(f"Accuracy: {accuracy:.2f}")